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Abstract

Nogood recording is a form of learning that has been shown useful for solving constraint satisfac-
tion problems. One simple approach involves recording nogoods that are extracted from the rightmost
branches of the successive trees built by a backtrack search algorithm with restarts. In this paper, we
propose several mechanisms to reason with so-called increasing-nogoods that exactly correspond to
the states reached at the end of each search run. Interestingly, some similarities that can be observed
between increasing-nogoods allow us to propose new original ways of dynamically combining them
in order to improve the overall filtering capability of the learning system. Our preliminary results
show the practical interest of our approach.

1 Introduction
Nogood recording is a learning technique that has been applied to the Constraint Satisfaction Problem
(CSP) in the 90’s [2, 4, 14]. A classical nogood is defined as a partial instantiation that cannot be
extended into a solution. Such nogoods have been cleverly exploited to manage explanations [5, 7]
of values that are deleted during search (when running constraint propagation). They have also been
generalized [8] by incorporating both assigned variables (positive decisions) and refuted values (negative
decisions). More recently, the practical interest of nogood recording has been revisited in the context of
lazy clause generation [3].

Nogoods can also be effective in the context of a backtrack search algorithm that regularly triggers
restarts. Indeed, just before restarting, a set of nogoods can be easily identified [10] on the rightmost
branch of the search tree, which stands for the part of search space that has been explored during the
last run. By recording these so-called nld-nogoods, we obtain the guarantee of never exploring the
same subtrees, further making the approach complete. This restart-based learning mechanism has been
extended to take into account symmetry breaking [11, 13] and the increasing nature of nld-nogoods [12],
called increasing-nogoods for this reason.

In this paper, we propose several mechanisms to combine increasing-nogoods, allowing us to in-
crease their filtering capacity. By dynamically analyzing relevant subsets of increasing-nogoods, espe-
cially from equivalence forms between decisions, we show that the search space can be more efficiently
pruned. More specifically, we introduce three inference rules for deeper reasoning with increasing-
nogoods.

2 Preliminaries
A constraint network P is a pair (X ,C ), where X is a finite set of variables and C a finite set of con-
straints. Each variable x ∈ X has a domain, denoted by dom(x), which is the finite set of values a that
can be assigned to x. Each constraint c ∈ C involves an ordered set of variables, called the scope of c
and denoted by scp(c). A constraint c is semantically defined by a relation, denoted by rel(c), which
is the set of tuples allowed by (variables of) c. Let X ⊆ X be a subset of variables, an instantiation I of



Combining Nogoods in Restart-Based Search Glorian et al.

δ1

δ2 ¬δ2

δ6 ¬δ6

δ9 ¬δ9

δ8

δ11 ¬δ11

Figure 1: The search tree at the end of a run.

X maps each variable x ∈ X to a value in dom(x); we note I[x] = a and vars(I) = X . An instantiation I
is complete iff vars(I) = X , partial otherwise. A solution of P is a complete instantiation satisfying all
constraints of P.

A nogood is an instantiation that cannot be extended to any solution. The benefit of recording
nogoods is to avoid some form of thrashing, i.e. exploring the same unsatisfiable subtrees several times.
There are two classical methods to identify and store nogoods: during search or at restarts. In this paper,
we consider a complete backtrack search algorithm with binary branching and nogood recording from
restarts [9]. Decisions taken during search are either positive (i.e., variable assignments such as x = a)
or negative (i.e., value refutations such as x 6= a). A decision δ is checked to be positive or negative
by simply writing pos(δ) and neg(δ), respectively. The variable involved in a decision δ is denoted by
var(δ), whereas the value involved in a decision δ is denoted by val(δ). Binary branching means that at
each search node a left branch labeled with a positive decision x= a is developed first, and a right branch
labeled with a negative decision x 6= a is developed next. A decision δ is satisfied (resp., falsified) iff it
holds (resp., does not hold) whatever is the value chosen in the current domain of var(δ). A decision
that is not satisfied (resp., falsified) is said to be unsatisfied (resp., unfalsified).

3 Increasing Nogoods
So-called nld-nogoods [9] (negative last decision nogoods) can be extracted at each restart of a backtrack
search algorithm. Let us assume that the sequence of labels all along the rightmost branch of a current
search tree being developed is Σ= 〈δ1, . . . ,δm〉, where each decision of Σ is either a positive or a negative
decision. It is known that for any i such that 1≤ i≤ m and neg(δi), the set {δ j : 1≤ j < i∧ pos(δ j)}∪
{¬δi} is a reduced nld-nogood. Note that it only contains positive decisions (and so, is a standard
nogood). From now on, for simplicity reasons, we simply call them nld-nogoods.

Example 3.1. Let us consider the search tree depicted in Figure 1, where the rightmost branch of
the tree is Σ = {δ1,¬δ2,¬δ6,δ8,¬δ9,¬δ11}. The following (reduced) nld-nogoods can be extracted:
{δ1,δ2}, {δ1,δ6}, {δ1,δ8,δ9} and {δ1,δ8,δ11}.

As we can observe, there are some similarities between these nld-nogoods: they are said to be
increasing [12, 13]. An increasing-nogood compactly represents the full set of nld-nogoods that can be
extracted from a branch. To obtain an increasing-nogood from a set of nld-nogoods, we have first to
consider each nld-nogood under its directed form.

Example 3.2. Considering again the search tree in Figure 1, let us assume the decisions of the last
branch represent: Σ = 〈x2 = 1, x3 6= 0, x4 6= 1, x5 = 2, x1 6= 1, x6 6= 2〉. The four nld-nogoods ng0, ng1,
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ng2 and ng3 are given below under their logical forms (middle) and directed forms (right):

ng0 ≡ ¬( x2 = 1∧ x3 = 0)≡ x2 = 1⇒ x3 6= 0
ng1 ≡ ¬( x2 = 1∧ x4 = 1)≡ x2 = 1⇒ x4 6= 1
ng2 ≡ ¬( x2 = 1∧ x5 = 2∧ x1 = 1)≡ x2 = 1∧ x5 = 2⇒ x1 6= 1
ng3 ≡ ¬( x2 = 1∧ x5 = 2∧ x6 = 2)≡ x2 = 1∧ x5 = 2⇒ x6 6= 2

In [12], the authors have shown that the set of directed nld-nogoods extracted from a branch are
necessarily increasing, meaning that LHS(ngi)⊆ LHS(ngi+1) where LHS designates the left hand side of
the implication. This is illustrated on our example by:

ng0 ≡ x2 = 1⇒ x3 6= 0
ng1 ≡ LHS(ng0)⇒ x4 6= 1
ng2 ≡ LHS(ng1)∧ x5 = 2⇒ x1 6= 1
ng3 ≡ LHS(ng2)⇒ x6 6= 2

In practical terms, it means that it suffices to record the branch exactly as it is instead of extract-
ing nld-nogoods independently. Another important observation is that each increasing-nogood can be
viewed as a constraint, together with a filtering algorithm enforcing GAC (Generalized Arc Consis-
tency). Interestingly enough, if 〈ng1, . . . ,ngt〉 is a sequence of increasing nld-nogoods, and if LHS(ngi)
contains two unsatisfied decisions then any nogood ng j with j ≥ i is necessarily GAC because the LHS
of larger nogoods subsume the LHS of smaller ones.

Technically, two indices α and β can be used to watch the two leftmost unsatisfied positive decisions
in the sequence of an increasing-nogood. These two watched decisions as well as all the negative
decisions that may occur between them are under surveillance, as δ1, ¬δ2 and δ3 in the following
illustration:

Σ = 〈
Watched︷ ︸︸ ︷

δ1︸︷︷︸
α

,¬δ2, δ3︸︷︷︸
β

, δ4,¬δ5,¬δ6〉

For the sake of simplicity, we consider that for any increasing-nogood Σ, the decisions in Σ that are
watched by the alpha and beta indices can be respectively accessed by using α(Σ) and β(Σ). On our
illustration, α(Σ) and β(Σ) are respectively δ1 and δ3.

The filtering algorithm (called IncNG) associated with an increasing-nogood (constraint) is triggered
in three cases:

1. a watched negative decision is falsified: α(Σ) must be forced to be falsified, and consequently all
nogoods within the constraint are satisfied;

2. α(Σ) is satisfied: all negative decisions between α and β must be satisfied and we search for the
next unsatisfied positive decision;

3. β(Σ) is satisfied: we need to find the next unsatisfied positive decision.

4 Reasoning with Increasing Nogoods
When considered as constraints, it is quite natural that nld-nogoods and increasing-nogoods are solicited
independently for filtering tasks. However, we show that it is possible to exploit the similarities that exist
(rather frequently) between such nogoods. More specifically, we introduce in this section three rules for
reasoning deeper with increasing-nogoods.
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Algorithm 1: checkNegativeDecisions(Σ : increasing-nogood)

1 foreach x ∈ diffVars(Σ) do
2 if dom(x)⊆ diffValues(Σ,x) then
3 falsify α(Σ);

4.1 Reasoning with Watched Negative Decisions
By checking for each variable x and each increasing-nogood Σ that there exists a value in dom(x) which
is not involved in a negative decision for x between α(Σ) and β(Σ), we have the guarantee of not missing
some inferences from a simple reasoning on watched negative decisions.

Example 4.1. Consider the following increasing-nogood: Σ = 〈x2 = 1,x3 6= 2,x3 6= 4,x5 = 3〉. Assume
that we have α(Σ) and β(Σ) being indices for x2 = 1 and x5 = 3, and all variables with the same domain
{1,2,3,4}. If x2 is assigned to the value 1, then the values 2 and 4 can be removed from dom(x3). Of
course, a conflict occurs if dom(x3) only contains these two values. However, this conflict could have
been avoided (anticipated) by removing the value 1 from dom(x2) as soon as dom(x3) is reduced to
{2,4}.

First, we introduce a function diffValues(Σ,xi) that returns for a given increasing-nogood Σ, the
set of values present in a negative decision of Σ involving xi and situated between α(Σ) and β(Σ). We
also introduce a function diffVars(Σ) that returns the set of variables involved in a negative decision
of Σ situated between α(Σ) and β(Σ). For example, for Σ = 〈x2 = 1,x3 6= 2,x3 6= 4,x5 = 3〉 with α(Σ)
being x2 = 1 and β(Σ) being x5 = 3, we have diffVars(Σ) = {x3} and diffValues(Σ,x3) = {2,4}.
Algorithm 1 implements this way of reasoning, i.e. performs an inference by refuting the value involved
in α(Σ), each time a conflict can be anticipated as discussed above. Even if increasing-nogoods are
still reviewed independently (in turn), the filtering capability of the algorithm proposed in [12] is clearly
improved if this simple procedure is systematically called. The worst-case time complexity of Algorithm
1 is O(nd) where n is the number of variables and d is the size of the largest domain. Indeed, we can
precompute sets diffVars(Σ) and diffValues(Σ,x) by scanning the decisions in Σ whose size is
O(nd). With these precomputed sets, executing lines 1–2 is also in O(nd).

4.2 Combining Increasing Nogoods of Similar α

In this section, we extend the principle presented above to sets of increasing-nogoods. For this purpose,
we partition the set of increasing-nogoods according to the decisions indexed by α: two increasing-
nogoods Σi and Σ j are in the same group iff α(Σi) is the same decision as α(Σ j). Of course, it is therefore
necessary to update the partition each time one α is modified (i.e., when filtering and backtracking).
Despite that, reasoning about groups of increasing-nogoods allows us to improve the filtering capacity
of the increasing-nogoods, and turns out to encompass the previous case.

Example 4.2. Let us consider the three following increasing-nogoods:

Σ0 ≡ ... , x6 6= 2, x2 = 1︸ ︷︷ ︸
α

, x1 6= 3, x3 6= 1, ...

Σ1 ≡ ... ,x2 6= 0, x1 6= 2, x2 = 1︸ ︷︷ ︸
α

, x3 6= 0, ...

Σ2 ≡ ... ,x2 = 1︸ ︷︷ ︸
α

, x3 6= 2, x6 6= 1, x8 6= 3, ...
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Algorithm 2: checkNegativeDecisions(Σs : set of increasing-nogoods)
Data: Increasing-nogoods in Σs have a common α

1 foreach x ∈
⋃

Σ∈Σs diffVars(Σ) do
2 if dom(x)⊆

⋃
Σ∈Σs diffValues(Σ,x) then

3 falsify α(Σ) ; // Σ can be any increasing-nogood from Σs

and let us assume that all variables have the same domain {0,1,2,3}. On this example, we can observe
that x2 = 1 is the common α to this group of three increasing-nogoods. By looking at the negative deci-
sions following these three occurrences of α (the precise values of β are not relevant for our illustration),
we can collect {0,1,2} as values involved in watched negative decisions for x3 (they are necessarily put
before β which is not represented here). This means that if x2 is assigned the value 1 then the only
remaining value in dom(x3) will be 3. On the other hand, if at a certain moment, the domain of x3 does
not contain anymore the value 3, it is absolutely necessary to prevent x2 from being assigned the value
1.

Algorithm 2 is a generalization of Algorithm 1, by considering groups of increasing-nogoods instead
of increasing-nogoods individually. Algorithm 2 has a worst-case time complexity in O(nd +g) where
g is the sum of the size of the increasing-nogoods in Σs (we have g = ∑Σ∈Σs |Σ|). Indeed, precomputing
sets

⋃
Σ∈Σs diffVars(Σ) and

⋃
Σ∈Σs diffValues(Σ,x) can be performed in O(g) by scanning every

decision in the increasing-nogoods of Σs. With these precomputed sets, executing lines 1–2 is in O(nd).

4.3 Combining Increasing Nogoods using Pivots
We call pivot a variable x such that for any value a ∈ dom(x) there exists an increasing-nogood Σ

such that α(Σ) is the positive decision x = a; in that case, we say that Σ is a support of pivot x for a.
Interestingly, once a pivot variable x is identified, it is possible to infer negative decisions that are shared
by all supports of x. This is the principle of the algorithm we present after an illustration.

Example 4.3. Let us consider the following three increasing-nogoods:

Σ0 ≡ ... , x6 6= 2, x2 = 1︸ ︷︷ ︸
α

, x1 6= 0, x3 6= 1, ...

Σ1 ≡ ... ,x7 6= 0, x1 6= 2, x2 = 0︸ ︷︷ ︸
α

, x3 6= 1, ...

Σ2 ≡ ... ,x2 = 2︸ ︷︷ ︸
α

, x3 6= 1, x6 6= 1, x8 6= 2, ...

and let us assume that all variables have the same domain {0,1,2}. On this example, we can see that
x2 is a pivot since all its possible values are involved in α of different increasing-nogoods. As x3 6= 1 is
a negative decision that is watched in the three increasing-nogoods, we can deduce that x3 must always
be different from 1.

Algorithm 3 implements the use of pivot variables for making additional inferences. Line 1 only
iterates over the variables that are involved in some α (i.e., α of some increasing-nogoods). Line 2 tests
if the variable x is indeed a pivot. Line 3 iterates over the decisions that are shared by all supports of x.
Each such decision must be forced to be satisfied. Note that an optimization consists in only checking
that a decision is shared by some subsets of supports of x, the subsets with exactly one support of x
for each value. Algorithm 3 has a worst-case time complexity in O(n2d p) where p is the number of
increasing-nogoods.

5



Combining Nogoods in Restart-Based Search Glorian et al.

Algorithm 3: checkPivots(Σs : the full set of increasing-nogoods)

1 foreach x ∈ {var(α(Σ)) : Σ ∈ Σs} do
2 if dom(x)⊆ {val(α(Σ)) : Σ ∈ Σs∧ var(α(Σ)) = x} then
3 foreach δ ∈

⋂
{Σ ∈ Σs : var(α(Σ)) = x} do

4 satisfy δ;

5 Experiments

We have conducted an experimentation on a computer Intel Xeon X5550 clocked at 2,67 GHz and
equipped with 8 GBytes of RAM. Our initial benchmark was composed of all instances that were used
during XCSP 2.1 solver competitions. We discarded the series of instances that were either too easy to
solve (less than 1 second) or too hard to solve (more than 900 seconds) when employing MAC without
nogood recording; this yielded a set composed of 3,744 instances. For our experiments, we have used
the solver rclCSP introduced in [6]. The variable ordering heuristic is dom/wdeg [1] and the restart
policy corresponds to a geometric series of first term 10 and common ratio 1.1. Given the complexity
of Algorithm 3 and because Algorithm 1 is generalized by Algorithm 2, we chose to conduct our ex-
periments with only Algorithm 2 (combining increasing-nogoods of similar α). For our comparison,
we tested three methods: NRR (nogood recording from restarts as proposed in [12]), IncNG (managing
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Figure 2: Pairwise comparison (CPU time in seconds) of IncNG and IncNG+. Results obtained on the
3,744 instances used as benchmarks. The timeout to solve an instance is set to 900 seconds.
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Series #inst NLD IncNG IncNG+
#sols PAR10 #sols PAR10 #sols PAR10

costasArray 11 9 1,745 9 1,686 9 1,686
fapp11-15 55 42 2,162 42 2,157 42 2,155
frb45-21 10 9 1,138 10 232 10 282
nengfa 10 9 970 9 954 9 974
ogdVg 65 35 4,197 39 3,637 40 3,511

ortholatin 9 4 5,045 3 6,011 3 6,010
os-taillard-7 30 19 3,353 18 3,679 18 3,680

QCP-20 15 6 5,437 7 4,870 8 4,289
QWH-20 10 10 79 10 47 10 48
QWH-25 10 1 8,187 0 9,000 2 7,291

rand-2-50-23-fcd 50 5 8,146 12 6,953 15 6,436
rand-2-50-23 50 4 8,335 9 7,476 9 7,462
rand-3-24-24 50 14 6,596 16 6,248 18 5,900
rlfapScens11 12 11 852 11 844 11 852

super-jobShop 46 34 2,358 33 2,547 35 2,186

Table 1: Average results on 15 series of instances (timeout set to 900 seconds).

increasing-nogoods as proposed in [10]) and IncNG+ (combining increasing-nogoods, our approach as
introduced in section 4.2). Figure 2 displays the overall results that we have obtained. The scatter plot
shows that our approach (IncNG+) has usually a small overhead (when it turns out to be not very effec-
tive), and interestingly makes search a little bit more robust (see the dots on the right vertical line that
corresponds to unsolved instances by IncNG). Table 1 shows a detailed comparison between the three
methods on some series. The table contains the following information: the name of the series, the num-
ber of instances in the series (#inst) and for the three tested approaches, the number of solved instances
(#sols) and the PAR10 score that is the average of the runtimes while considering 10 times the timeout
(900) for unsolved instances. In general, our approach (IncNG+) solves at least as many instances as
IncNG and sometimes more (see, for example, super-jobShop). When IncNG and IncNG+ both solve
the same number of instances, we usually notice a slight loss for our approach due to the management of
the partitions of the increasing-nogoods (for example, see frb45-21). But interestingly, there are series
where this processing time is compensated by a better pruning of the search tree, with a substantial time
saving as outcome (rand-2-50-23). Moreover, we observe that, in general, the more difficult the instance
is, the more competitive our approach is, as illustrated by the QWH-20 and QWH-25 series which admit
increasing sizes and complexities.

6 Conclusion

In this paper, we have introduced three general rules allowing us to reason with (groups of) increasing-
nogoods. We have shown experimentally the practical interest of the second rule (which generalizes
the first one): when it is effective, i.e., when inferences can be performed by reasoning on groups
of increasing-nogoods, it saves computation time, and when it is not effective, the overhead is rather
limited. We believe that some improvements are still possible, especially on the exploitation of pivot
variables.
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